Linear Algebra I

13/04/2017, Thursday, 18:30-21:30

You are NOT allowed to use any type of calculators.
$1 \quad(4+2+7+2=15 \mathrm{pts})$
Linear systems of equations

In this problem, we want to find A, B, and C that satisfy the equation

$$
\frac{2 x^{2}-4}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B(x-2)}{(x-1)^{2}}+\frac{C(x-3)}{(x-1)^{3}}
$$

for all $x \in \mathbb{R}$.
a. Find the linear equations that A, B, and C should satisfy.
b. Write down the augmented matrix for the linear equations.
c. Put the augmented matrix into row reduced echelon form.
d. Find the general solution.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, (reduced) row echelon form, general solution.

Solution:

1a: We have

$$
\begin{aligned}
& 2 x^{2}-4=A(x-1)^{2}+B(x-2)(x-1)+C(x-3) \\
& 2 x^{2}-4=A\left(x^{2}-2 x+1\right)+B\left(x^{2}-3 x+2\right)+C(x-3) \\
& 2 x^{2}-4=(A+B) x^{2}+(-2 A-3 B+C) x+(A+2 B-3 C)
\end{aligned}
$$

Therefore, we obtain the linear equation system:

$$
\begin{aligned}
A+B & =2 \\
-2 A-3 B+C & =0 \\
A+2 B-3 C & =-4 .
\end{aligned}
$$

$\mathbf{1 b}$: The augmented matrix for the equation above is given by

$$
\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
-2 & -3 & 1 & \vdots & 0 \\
1 & 2 & -3 & \vdots & -4
\end{array}\right]
$$

1c: By applying row operations, we obtain:

$$
\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
-2 & -3 & 1 & \vdots & 0 \\
1 & 2 & -3 & \vdots & -4
\end{array}\right] \xrightarrow{\begin{array}{c}
\text { 2nd }=\mathbf{2 n d}+2 \times \mathbf{1 s t} \\
\mathbf{3 r d}=\mathbf{3 r d}-\mathbf{1 s t}
\end{array}}\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
0 & -1 & 1 & \vdots & 4 \\
0 & 1 & -3 & \vdots & -6
\end{array}\right] \xrightarrow{\text { 2nd }=-\mathbf{2 n d}}\left[\begin{array}{rrrcc}
1 & 1 & 0 & \vdots & 2 \\
0 & 1 & -1 & \vdots & -4 \\
0 & 1 & -3 & \vdots & -6
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
0 & 1 & -1 & \vdots & -4 \\
0 & 1 & -3 & \vdots & -6
\end{array}\right] \xrightarrow{\mathbf{3 r d}=\mathbf{3 r d}-\mathbf{2 n d}}\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
0 & 1 & -1 & \vdots & -4 \\
0 & 0 & -2 & \vdots & -2
\end{array}\right] \xrightarrow{\mathbf{3 r d}=-\frac{1}{2} \mathbf{3 r d}}\left[\begin{array}{rrrrr}
1 & 1 & 0 & \vdots & 2 \\
0 & 1 & -1 & \vdots & -4 \\
0 & 0 & 1 & \vdots & 1
\end{array}\right] .
$$

So far, we obtained a matrix in row echelon form. Continuing row operations, we get $\left[\begin{array}{rrrrr}1 & 1 & 0 & \vdots & 2 \\ 0 & 1 & -1 & \vdots & -4 \\ 0 & 0 & 1 & \vdots & 1\end{array}\right] \xrightarrow{\text { 2nd }=\mathbf{2 n d}+\mathbf{3 r d}}\left[\begin{array}{rrrrr}1 & 1 & 0 & \vdots & 2 \\ 0 & 1 & 0 & \vdots & -3 \\ 0 & 0 & 1 & \vdots & 1\end{array}\right] \xrightarrow{\text { 1st }=\mathbf{1 s t} \mathbf{- 2 n d}}\left[\begin{array}{cccc}1 & 0 & 0 & \vdots \\ 0 & 1 & 0 & \vdots \\ 0 & 0 & 1 & -3 \\ \hline\end{array}\right]$.

1d: From the reduced row echelon form, we see that the general solution is $A=5, B=-3$, and $C=1$.

Find all values of a and b such that the matrix

$$
\left[\begin{array}{ccc}
1 & a & b \\
1 & a^{2} & b^{2} \\
1 & a^{3} & b^{3}
\end{array}\right]
$$

is nonsingular.

REQUIRED KNOWLEDGE: Determinant and nonsingularity

Solution:

By applying row/column operations, we obtain

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & a & b \\
1 & a^{2} & b^{2} \\
1 & a^{3} & b^{3}
\end{array}\right]\right) & =a b \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & b \\
1 & a^{2} & b^{2}
\end{array}\right]\right)=a b \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & a-1 & b-1 \\
0 & a^{2}-1 & b^{2}-1
\end{array}\right]\right)=a b \operatorname{det}\left(\left[\begin{array}{cc}
a-1 & b-1 \\
a^{2}-1 & b^{2}-1
\end{array}\right]\right) \\
& =a b(a-1)(b-1) \operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
a+1 & b+1
\end{array}\right]\right)=a b(a-1)(b-1)(b-a)
\end{aligned}
$$

Therefore, the matrix is nonsingular if and only if $a, b \neq\{0,1\}$ and $a \neq b$.

Consider the vector space P_{3}. For a polynomial p, let p^{\prime} denote its derivative.
a. Show that the set

$$
\left\{p(x) \in P_{3} \mid p(1)=p^{\prime}(1)\right\}
$$

is a subspace of P_{3}.
b. Let $L: P_{3} \rightarrow P_{3}$ be given by

$$
L(p(x))=p^{\prime}(1) x+p(1)
$$

Is L a linear transformation? If so, find its matrix representation with respect to the basis $\left\{1, x, x^{2}\right\}$.

REQUIRED KNOWLEDGE: Vector space, subspace, linear transformation, matrix representation

Solution:

3a: Let

$$
S:=\left\{p(x) \in P_{3} \mid p(1)=p^{\prime}(1)\right\}
$$

As it contains the zero polynomial, S is non-empty. Let

$$
p(x) \in S
$$

and α be a scalar. This means that

$$
p(1)=p^{\prime}(1)=0
$$

Note that

$$
(\alpha p)(1)=\alpha p(1)=\alpha p^{\prime}(1)=(\alpha p)^{\prime}(1)
$$

Hence, $(\alpha p)(x) \in S$. So, the set S is closed under scalar multiplication. In order to show that it is closed under vector addition as well, let

$$
p(x), q(x) \in S
$$

Note that

$$
(p+q)(1)=p(1)+q(1)=p^{\prime}(1)+q^{\prime}(1)=(p+q)^{\prime}(1)
$$

Therefore, $(p+q)(x) \in S$. Consequently, S is a subspace.

3b: Note that

$$
L(\alpha p(x))=(\alpha p)^{\prime}(1) x+(\alpha p)(1)=\alpha p^{\prime}(1) x+\alpha p(1)=\alpha L(p(x))
$$

and

$$
L(p(x)+q(x))=(p+q)^{\prime}(1) x+(p+q)(1)=p^{\prime}(1) x+q^{\prime}(1) x+p(1)+q(1)=L(p(x))+L(q(x))
$$

Therefore, L is a linear transformation.
In order to find the matrix representation, we first apply L to the basis vector:

$$
\begin{aligned}
L(1)=1 & =1 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
L(x)=x+1 & =1 \cdot 1+1 \cdot x+0 \cdot x^{2} \\
L\left(x^{2}\right)=2 x+1 & =1 \cdot 1+2 \cdot x+0 \cdot x^{2}
\end{aligned}
$$

This results in the following matrix representation:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$ be with $\operatorname{rank}(A)=n$. Suppose that \hat{x} is the solution for the least squares problem given by A and b. Show that

$$
\|A \hat{x}-b\|^{2}=b^{T}\left(I_{m}-A\left(A^{T} A\right)^{-1} A^{T}\right) b
$$

REQUIRED KNOWLEDGE: Least squares problem, normal equations.

Solution:

When A is full column rank, the unique solution to the normal equations are given by

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

Then, we have

$$
A \hat{x}-b=A\left(A^{T} A\right)^{-1} A^{T} b-b=\left(A\left(A^{T} A\right)^{-1} A^{T}-I_{m}\right) b
$$

This leads to

$$
\begin{aligned}
\|A \hat{x}-b\|^{2} & =(A \hat{x}-b)^{T}(A \hat{x}-b)=\left[\left(A\left(A^{T} A\right)^{-1} A^{T}-I_{m}\right) b\right]^{T}\left(A\left(A^{T} A\right)^{-1} A^{T}-I_{m}\right) b \\
& =b^{T}\left(A\left(A^{T} A\right)^{-1} A^{T}-I_{m}\right)\left(A\left(A^{T} A\right)^{-1} A^{T}-I_{m}\right) b \\
& =b^{T}\left(I_{m}-A\left(A^{T} A\right)^{-1} A^{T}\right) b
\end{aligned}
$$

Let $u, v \in \mathbb{R}^{n}$ be nonzero vectors and $M=u v^{T}$.
a. Find all eigenvalues of M.
b. Show that M is diagonalizable if and only if $u^{T} v \neq 0$.

Required Knowledge: Eigenvalues, diagonalization.

Solution:

5a: Let λ and $x \neq 0$ be such that

$$
\begin{equation*}
u v^{T} x=\lambda x . \tag{1}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
v^{T} u v^{T} x=\lambda v^{T} x \tag{2}
\end{equation*}
$$

by multiplying both sides by v^{T} from left. Note that if $v^{T} x=0$ then λ must be zero due to (1). If $v^{T} x \neq 0$ then (2) results in

$$
\lambda v^{T} u
$$

Therefore, an eigenvalue of M is either zero or $v^{T} u$.
$\mathbf{5 b}$: Note that the null space of M is the same as the null space of v^{T} since $u \neq 0$. As $v \neq 0$, we have $\operatorname{dim} N(M)=n-1$ from the rank-nullity theorem. Therefore, M is diagonalizable if and only if zero eigenvalue has multiplicity $n-1$. This happens if and only if $v^{T} u \neq 0$.

Let $a \in \mathbb{R}$ and M be a 4×4 matrix with the characteristic polynomial $p_{M}(\lambda)=\left(\lambda^{2}-a^{2}\right)\left(\lambda^{2}+a^{2}\right)$.
a. Determine the eigenvalues of M.
b. Determine the determinant of M.
c. Find all values of a such that M is nonsingular.
d. Determine trace (M), the sum of the diagonal entries.
e. Show that M is diagonalizable if $a \neq 0$.
f. Let $a=0$. Find such an M matrix that is diagonalizable. Also, find such an M matrix that is not diagonalizable.

REQUIRED KNOWLEDGE: Eigenvalues, characteristic polynomial, nonsingularity, determinant, trace, diagonalizability.

SOLUTION:

6a: Eigenvalues are the roots of the characteristic polynomial. As such, we have

$$
\lambda_{1,2}= \pm a \quad \text { and } \quad \lambda_{3,4}= \pm i a
$$

6b: Determinant is the product of eigenvalues. Therefore, $\operatorname{det}(M)=p_{M}(0)=-a^{4}$.
6c: A square matrix A is nonsingular if and only if $\operatorname{det}(A) \neq 0$. Therefore, M is nonsingular if and only if $a \neq 0$.

6d: Trace of a square matrix is the sum of its eigenvalues. As such, $\operatorname{trace}(M)=0$.
6e: If $a \neq 0$, then M has distinct eigenvalues. As such, it is diagonalizable.
6f: Consider the matrices

$$
M_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad M_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Note that $p_{M_{1}}(\lambda)=p_{M_{2}}(\lambda)=\lambda^{4}$. Clearly, M_{1} is diagonalizable. We claim that M_{2} is diagonalizable. This would follows from the fact that the null space of M_{2} is of dimension 1 although its zero (only) eigenvalue has multiplicity 4.

